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ABSTRACT 

We construct polynomial orthonormal bases in various function spaces. Our 

bases have linear order of growth of degrees of polynomials. We show that  this 

order is optimal. 

1. I n t r o d u c t i o n  

In this paper we construct bases consisting of trigonometric polynomials of small 

degree in spaces of functions on the circle T. It is well known that C(T) has 

a Schauder basis, so by a classical stability result it has a basis consisting of 
trigonometric polynomials. Two questions appear naturally: 
(1) How small can the degrees of the polynomials in the basis be? 

(2) Can we construct such a basis to be orthonormal, and if so what are the 

degrees? 
Probably [Fab] is the first paper dealing with this question. Various forms of 

those questions were asked in many papers (see lUll], IF-S]) and a lot of effort 

was spent on various partial solutions. A good and relatively complete survey 

is [U12]. The only significant omission is that the important paper [Pri] is not 

mentioned there. 

Given any system of trigonometric polynomials (@t)~°ffi0 on T we define vn(~t)  

= v. = maxk<, deg ~t .  Clearly (v.)n°°=0 is an increasing sequence. A simple 
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algebra shows that if (~k)~°°__ 0 is a Schander basis then v~,,+l >_ n and Faber 

in [Fab] has shown that equality for infinitely many n's is impossible for any 
Schauder basis in C(T). A recent result of Privalov [Pri] says that in C(T) we 

always have v,, >_ ½(1 + e)n for some positive e. On the other hand Bo~kariov 

[Bo~] has constructed a basis (but not orthonormal) in C(T) with v,, _< 4n. For 

every ~ > 0 orthonormal bases in C(T) are known with v,, < n 1+~ (see [~al]). 
Similar questions for unconditional bases in Lp(T), 1 < p < co, p # 2 have been 

considered in [Ca2] where for every e > 0 an orthonormal unconditional basis in 

Lp(T) with v,, < n 1+~ has been constructed. The main result of this note can 

be stated as follows: 

THEOREM A: There exists an orthonorma/system of trigonometric polynomi- 

a/s (¢k)~°=0 on T such that 

(1) vn(~k) < } . n ,  

(2) (¢k)~°=o is a Schauder basis in C(T)  (and so in L,(T) ), 

(3) (q~k)~°=0 is an unconditional basis in ReH1 and thus in a/t Lp(T)/'or 1 < p < 

CO. 

We also give a simple proof of the result of [Bo~] and extend the result of [Pri] 

to other function spaces. 

It should be pointed out that our methods are direct (we do not use any 

approximation of good bases by trigonometric polynomials) and are a direct 

outgrowth of a construction of J. Bourgain [Bou] of a Schauder basis with uni- 

formly bounded basis constants in spaces of trigonometric polynomials of a fixed 

degree. 

The organization of the paper is as follows. Section 2 contains some known 

Lemmas and estimates to be used later. In Section 3 we construct (for each ~) 

an interpolating basis in C(T) with v,~ <_ (1 + ¢)n. Better result have been ob- 

tained in [Pril] (see also Remark 4 in Section 3). This section is included for two 

reasons: our construction is very simple and it may serve as an introduction to a 

more technically complicated but basically similar construction of an orthonor- 

mal system with properties described in Theorem A. This construction and the 

proof of (i) and (ii) of Theorem A are contained in Section 4. In this section 

we also construct a polynomial basis in the disc algebra A with v,, < 8/3 • n. 

This basis is an "analytical" version of the system (q~)k°°=0. Section 5 contains 

a proof of property (iii) of Theorem A. It is a modification of a proof that the 

Franklin system is unconditional in ReH1, given in [Wol]. Section 6 contains 

the extension of the Theorem of Privalov [Pri]. We show that his result holds 
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also in spaces LI(T) ,  A and/-/1. It solves some problems left open in [Shl] and 

[Sh2]. 
Hidden in our constructions are projections in C(T)  with uniformly bounded 

norms whose ranges are contained in spaces of polynomials of small degree. 

Such examples are related to the well known "finite dimensional 7rx-problem" 

(see also Remark 3 in Section 4). For more detailed investigation of ranges of 

such projections and construction of polynomial orthonormal bases with vn as 

small as possible we refer the reader to the forthcoming paper of the second 

named author. 

Clearly analogous questions can be considered for algebraic polynomials on an 

interval. They seem to require different techniques. We do not discuss them in 

this paper. 

2. Definit ions,  Notat ions  and Some Lemmas 

We will freely use the basic and elementary facts about bases in Ba~ach spaces. 

Those facts and definitions can be found in any text on Banach spaces. For 

obvious personal reasons we recommend [Wo2] which contains everything we will 

need. Naturally we will assume some familiarity with trigonometric polynomials. 

In particular we will freely use the natural identification of the circle T with the 

interval [0, 21r] with identified endpoints. Let us also point out that for a function 

f E LI (T)  its n-th Fourier coefficient will be denoted by ](n).  Let us recall some 

well known facts. 

By ~-M we will denote the Fejer kernel 
M 

(2.1) .~M(t) = Z (1-- Ikl , ik = sin2( M +  1)t/2 
k=-M M+I )e (M + 1) sin 2 t/2" 

The function 12M,N, M > N is defined by the formula 

M + I  _ N + I  _ 
(2.2) 12M,N -- ~ - "~Y 'M -- M - N y'N" 

Simple calculation gives that  

(2.3) 1)M,N(t) = sin(M + N + 2 ) t / 2 .  sin(M - N)t/2 
(M - N) sin 2 t/2 

The functions ~M,N are well known de la Vall~e Poussin kernels. From (2.2) and 

the fact that  II~'MII1 = I we  get 
2(M + 1) 

(2 .4)  II1)M,NII1 < 
M - N  

M+X Remark: As a mat ter  of fact Z(M+I)M_N in (2.4) can be replaced by Clog M-N" 

This is known and can be obtained from Lemma 2.2. 
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Now we can prove 

LEMMA 2.1 : If f is a polynomial of degree at most N then the following holds: 
M 

N 1) (2.5) ~ If(to - xi)l < C. MIIfII, m a x ( ~ ,  
.i=1 

where C is a constant and 

( ],2.6 zj=27rJM for  j = I , 2 , . . . , M .  

Proof: For the trigonometric polynomial ~'N we have 
M M M N 

~IYN(t0--Xj)I = ~--:~-N(t0--Xi) = ~ ~ fN(k)~ 'k~'°-'~ 
j=l jr1 j=l k=-N 

N M 
= _< M 

k=-N j = l  

where D = {k : Ikl _< N and k = t-M for some integer q. Thi, give, (2.5) for 

the polynomiai ~'N. Now let us observe that f = f * ])2N,N so 

If(to - xj)[ = V2N,N(S "~" Zj -- t 0 ) f ( 8  ) d..q[ 
j = l  "= 

M 

£ (i~= 1 [))2N, N(8 -- t 0 "Jr Zj) l ) [ f ( .5) l  d,5. 

Since we know already that (2.5) is valid for ~'N and ~'2N, from (2.2) we obtain 
that the expression between round brackets is estimated by C M  max(N/M,  1). 

This gives (2.5). 
We will also need the following Lemma, which in full generality can be found 

in [S-W]. 

LEMMA 2.2: Let f ( t )  be a complex-valued function defined on the real line 

such that Ilflll < c~. Then for every integer n there exists a function F on the 
circle T such that 

(2.7) F(k) = h(~) for an k 

where h is the Fourier transform of f .  This function F belongs to LI(T) and 

satis£es 

(2.8) IIFlll <- (2~r) -111fllx. 
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3. Interpolating Basis  

In this section we construct a polynomial interpolating basis in C(T) .  Let us 

fix a natural  number N > 0 and consider the sequence of functions {Wk(t)}~°=0 

defined by 

(3.1) 
I, if Itl < IV2~, 

I~k(1) -- (N+D2'-I/I 2' , if N2 k < I:I < (N + 1)2 k, 
0, otherwise. 

Those are de la Vallde Poussin kernels ~(N+1)2h_l,N2h_l. Thus from (2.2) we 

see that 

(3.2) W k = (N + l)Jr(N+l)2,_l -- N~'N2h_ I. 

and from (2.3) we get 

1 sin(2N + l)2k-lt • sin2k-xt 
(3.3) Wk(t)  = 2~ sinZt/2 

Let us define 

(3.4) d ( N , k ) = N 2  k+l +2 ~, 

2~j 
(3.5) xj -- d(-~,k) for j = O, 1 , . . . ,  d(N, k) - 1, 

(3.8) v~(t) = W*(t- =k) 3 k = 0 ,1 ,2 , . . .  j = 0 ,1 , . . .  d ( N , k ) -  1. 
dCN, k) ' 

THEOREM 3.1: The system (¢$,),C~=o given explicitly as 

vo, 0 V;¢N,O~_,, V:, Vl, V~,.. ' • . . ,  . ,  V~¢N,,)-,, V?, Vl, . . .  

is an interpolating basis in C(T). Each ~. is a trigonometric polynomial and 

d e g * .  _< (1 + 2-'~+1)n f o r n  > d(N,O). 
% 

Prooa~ From (3.3) we see that 

(3.7) v](=, ~) = t,,j. 
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us denote Bk = span {Vj~)~.,__.o,~)-,..__..at~ Let 

markable properties : 

Spaces Btc, k = 0, 1 , . . .  

(3.8) e itt E Bk for Ill < 2kN, 

have two re- 

d(N,k)-I 

(3.9) max lajl-< II ajv]ll~ < c max lajl, 
O<_j<_d(N,k)-I j=O -- O<_j<_d(N,k)-I 

where the constant C depends on N but not on k. 

To check (3.8) we write for Itl < 2kN 

(3.10) 

d(N,k)-I 

j=O 

d(N,k)-I 
=d(N'k)-i E 

j=0 

= d(N, k) -1 

e ~  ~ ~¢%)e'('-z~ )" 
Isl<(N+l)2 k 

d(N,k)-~ 
E ~ ' r k ( s ) e i t s E  e ~ = e i l ' "  

Isl<(N+l)2h j=o 

dtN k ~ I 2,ri(t-,)) 
To see the last equality note that  Ej~0' ' -  e ~'-W-~q- equals 0 if (l - s) is not 

an integer multiple of d(N, k) and equals d(N, k) if (l - s) is an integer multiple 

of d(N, k). But this happens only when l = s. In this case 14rk(s) = 1. 

The left hand side of (3.9) follows from (3.7) and the right hand side foUows 

from Lemma 2.1 and (2.4). From (3.8) we see that  Bk C Bk+x k = 0,1,2,  . . . .  

We can also define natural  projections Pt  from C onto Bk by the formula 

d(N,k)-I 

j=0 

It follows from (3.9) that 

(3.11) IIPkll-< c .  

From (3.5) we see that PkPr = PrP~ = Pmln(~,r). From (3.5) we infer that 
xjk = zk-t-12j so (3.7) gives 

6+1 d(N, k + 1) 
Pk(V~r_l )  = 0 for r = t , 2 , . . . ,  2 
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.f l,r k+ l  "td(N,k+l)/2~ Since the space Bk+a = span Bk, t -2r - l j ,=_ l  ] (count dimensions) and 

[-Jk___0 Bk is dense in C(T)  (use (3.8)) we see that  the system (~n),,°°__ 0 is a 
Schauder basis in C(T) .  

From the definition of the projections Pk and (3.7) we see that  it is an inter- 

polating basis. Since each Vjk is a trigonometric polynomial of degree (N + 1)2 k 

we see that  for n > d(N, 0) we have 

1 
deg @,, < (1 + --+-"--"~)n'2N 

Remark 1: The basis constant of the basis (~n)n°°_-- 1 is at most 3C where C is a 

constant appearing in (3.9). This constant can be majorised by c In N ( cf. the 

Remark after (2.4)). 

Remark 2: The estimate for the degree of the polynomial ~,, looks a little better 

than it really is. One has to remember that  the dimension of the space of 

trigonometric polynomials of degree at most n is 2n + 1. Thus our basis really 

takes a bit more than twice as big a degree as is needed algebraically. 

Remark 3: A very similar basis was constructed by S.V. BoEkariov [BoE]. In the 

construction the difference seems to be that  we use de la Vall6e Poussin kernels 

while BoEkariov uses Fejer kernels. Our proof, however, is much simpler. 

Remark 4: Before we started the work on this paper we were informed by S.V. 

Bo~kariov that  polynomial bases for C(T)  with v,, < (¢+ 1/2)n were constructed 

earlier by A1. A. Privalov modifying the construction from [Bo~]. After the 

present paper was submitted the paper of Privalov [Pril] appeared. He uses de 

la Vall~e Poussin kernels and our basis is a special case of his construction. His 

proof however contains many technical complications which are superfluous in 

our simple case. 

4. Construct ion of  an Orthogonal System 

In this section Vk, k = 0, 1, 2 , . . .  will always denote the classical de la Vall6e 

Poussin kernel V2~+1_1,2~_1 (see (2.2)). We consider the functions Fk = Vk - 

Vk-1, k = 0 ,1 ,2 , . . .  (by V-1 we mean 0). In terms of Fourier coefficients 
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functions Ft  are given by 

(4.1) 

{ ~ ,  for 2 k < Ill < 2 k+a 

Pk(l) = ~ ,  for 2 ~-1 < Ill _< 2 k if k > 0, 
0 otherwise, 

1, for Ill < 1 
F0( l )=  0 otherwise. 

Let us note also that from (2.3) and definitions of Fk we get 

F /2~r(J-J ' )~  (4.2) k~ ~_~V-~ I = 3.2~-li~j , j  ' . 

We define polynomials P0 k for k = 0, 1, 2 , . . .  by the formula 

{ ~ . r = - - - - -  f o r n < O ,  
(4.3) /50k (n) = - 

(-1)/c~fFk(n) for n _> 0. 

The desired orthogonal b~is  con~i.~ts of polynomials P°(t) ,  PP(t), P°( t )  and 
P~(t)  for k = 1, 2 , . . .  and j = 0 ,1 , . . . ,  3- 2 ~- '  - 1 given by 

2~rj 
(4.4) P~(t)  = Pok(t 3" 2 k - '  )" 

Let us start our investigation of this system with the observation that for a fixed 
( --k " 3"2t'-1-1 

k functions ,/~j )j=0 are orthogonal. This follows from (4.4), (4.3) and (4.2) 
because 

o o  

8 O0 

O0 
^ 2 7 1 ' s  ^ 2 ~ r i ' l e  

(4 5) = -  
J oo 

2~i , ( j ' - - j )  

= E , . , ' - '  
~ D  a OO 

= Fk k 3- 2 k-~ ] = 3.2k-~6~,f. 

For k > 0 consider spaces 
(4.6) 
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Clearly B~ is orthogonal to B~ for each k. Since for - 2  '+1 < n < - 2 '  - 1 we 

have  

3.2k-1_1 

(4.7) Z e3.2.-1 p~ = 3 . 2  ' -1  (Pok(n)c i't + Pok(n + 3 . 2 ' ) e  i(n+3"2k)t) 
j=0 

and for - 2  k < n < 2 ~-1 - 1 we have 

3.2 k-1 --1 
2.1nj k ^ " 

(4.8) Z e ~ P ;  = 3"2'-l ('fiok(n)e"U +'fiok(n + 3" 2'-])ei("+a'2'-')t) " 
j=0 

The caculations for (4.7) and (4.8) are similar to (3.10). Counting dimensions 
/ ~kX3-2k-l--1 we infer that the space Bk = span !,/-'j )j=o is (for k > 0 ) an orthogonal 

sum of B~ and B~. Observe also that 

(4.9) Bo 0 2 = span(P~ )j=0 = span(e '" ' ) ' .=_ , .  

From (4.7), (4.8) and (4.9) we see that spaces B~, B~ for k = 1, 2 , . . .  and B0 are 

mutually orthogonal. The only thing which is not obvious here is to check that 

B ° is orthogonal to B~+ 1. This follows from (4.6) and the following equalities; 

/5o}+1(n ) = (-1)}/3ok(n + 3 .2k) ,  

(4.10) /3~(n) = ( - - 1 ) k + l p : + l ( n  q- 3" 2k),  

valid for - 2  k+l < n < - 2 '  - 1, which are easy consequences of (4.1) and (4.3). 

Note also that (4.10) and simple induction imply that 

n [¢  ist~2n--1 On) (4.11) span (Bk).=o = span ~le 1.=_2. U B for n = 1,2, .... 

Thus we have 

LEMMA 4.1: The system of polynomials del6ned by (4.4) is a complete orthog- 
onal set. 

In order to investigate the properties of this set in the space C(T)  we will need 

the following estimate: 
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LEMMA 4.2: There exists a constant C such that [[P~I[1 < C for k = 0,1,  2 , . . .  
a n d j  = 0 , 1 , 2 , . . . , 3 . 2  #'-1 - 1. 

Proof." First of all note that (4.4) implies IIPYlI1 = IIP0klll for all admissible j 's. 
To estimate IIP0klll note that pod(t) =~nf_oog(n/2Oo t+l)ei,t for 

{ +~(s), for s > 0 
(4.12) g(s) = ~( -s ) ,  for s _< 0 

where the choice of sign depends on the parity of k and 

V ~ -  I, for ll4 < s < l/2, 
(4.13) ~(s) = v / ~ ,  for 1/2 < s < 1, 

0 otherwise. 

We see from Lemma 2.2 that it is enough to show that ~(t) = f.°°~o eiStqo(s)ds 
is in LI(R). This follows from the following Lemma which we state explicitly 

because we will need it also in Section 5. 

LEMMA 4.3:  

(4.14) 

Let ~o be de/~ned by (4.13). Then there exists a C such that 

I£ I{ " [~(t)l = eiSt~o(s)ds <- Ct-312C ifif [tlltl >< ~,. 

Proof: Integrating by parts and substituting we get 

Since ~'(s) has only two singularities, in 1/4 and 1, and at those it behaves like 
l / v / ; ,  we get 

o a(t) e iu I~(t)l < t -2C - - d u  = ct -s12. 
- 

Since ~ is clearly bounded by II ll  we get the desired estimate. 

LEMMA 4.4: There exist constants C 1 and C2 such that for every k = 0,1,2, . . .  

w e  h a v e  

3.2t-1_1 

(4.15) C13" 2 k-1 suplaJl < II E a P ]l o < C23.2 k- lsupl~i l  
J j=0 J 

~ t x3"2k-t--1 
for  an  s e q u e n c e s  o I  s c a l a r s  [ a j  ) j =  0 . 
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Proo£. From (2.1) and Lemma 4.2 we get 

3.2k-t_1 3.2k-1_1 

3 .2~- t  _ 1 ) ~ C3.2k-~llP0~16 ~ c . 3 . 2  k-ffi 

so the right hand side inequality of (4.15) follows. On the other hand, orthogo- 
nality of P~'s gives 

(4.16) 
k ,P;. , l .  II 

3 .2k - I_ i  3 .2k- t_1  

1=o j=o 

-,,,'so' t 2 _ . [ IP ;o l6  = la io I • IIPokll~. 

It follows from (4.5) that liP0% = ~/3 2 k-1 , SO Lemma 4.2 and (4.16) give the 
left hand side inequality in (4.15). 

THEOREM 4.5: Let  (~,),°°=o be the orthogonM system (P~) for k -- 0 ,1 ,2 , . . .  
and j = O, 1 , . . . ,  3 . 2  k - I  - 1 ordered as 

eo o po po pl ~,~ ~,, p~, PLP2, .  

The system (~,),°°=0 is a Schauder basis in the  space C(T), and each ~, is a 
trigonometric po/ynomJM of degree at most 4/3. n. 

Proof'. The estimate for the degree of @n follows from (4.1) and (4.3). Let us 
consider an orthogonal projection Qk onto the span(B,)~ffi0 (see (4.11)).  It 
easily follows from (4.11), (4.6), (4.3) and (4.1) that  Q~ can be explicitly written 
a8 

Q~(~'°') = (4.17) 

e i°t, if Is] ~ 2 ~ 

0, if ]s[ > 2 ~+1 

~t(s) (~t(~)e,., + p0~(s + 3.2,)e,(.+3 ,'),), 
i f - 2  k+l < s < - 2  k - 1  

i f2  k -  1 < s < 2 ~+1 

80 

(4.18) Qk = vk + A~ + A~ 
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where Vk is the operator of convolution with the de la Vall6e Poussin kernel Vk 

and 

(4.19) A~(ei't) =/3°k(s)"/5°k(s + 3 .2k)e  i('+aa~)', 

Ak2(e ''`) =/50k(s ) • P0k(s - 3 .2k)e  '( '-a'2`)`. 

It is well known that norms of Vk in C(T)  are uniformly bounded. The same 

for operators Aa k and A~ follows from Lemma 4.2. The uniform boundedness 

of projections (Qk)k°°=0 and Lemma 4.4 show that (@.).°°__ 0 is indeed a Schauder 

basis in C(T) .  

Now let us consider the space Ar of all functions f 6 C(T)  such that its 

trigonometric conjugate ] 6 C(T) .  The norm in A, is defined by Ill/Ill = Ilflloo + 

II]lloo. we  have 

THEOREM 4.6: The system ((I),),°°_ 0 considered in Theorem 4.5 is a Schauder 
basis in A,.. 

Proof: We will use results obtained in the course of the proof of Theorem 4.5. 

Note that the action of the trigonometric conjugation-on each Bk, k _> 1 can be 

represented as a convolution with the difference of two appropriately shifted de 

la Vall~e Poussin kernels. This shows tha t"  acts on each Bk with the uniformly 

bounded norm. This implies that norm [[. [[oo and [[[. [[[ are on Bk's  uniformly 

equivalent, so Lemma 4.4 holds for [[[-[[[ as well. The final step is to observe 

that  projections Qk are uniformly bounded in [[[. [[]. This can be easily checked 
for each of the operators in the decomposition (4.18). 

The importance of the space A, stems from the fact that it is naturally iso- 

morphic to the disc algebra A (see [Wo2, III.E.16 ]). Let us recall that  

A = { f ( z ) :  f is continuous for [z[ _< 1 and analytic for [z[ < 1} 

equipped with the supremum norm. One look at the isomorphism given in [Wo2, 

III.E.16] convinces us that the following holds: 

COROLLARY 4.7: The disc a/gebra A has a Schauder basis (~,,)n°°__ 0 consisting 
of polynomiMs such that deg~n _< 8 /3 .  n. When considered on the unit circle 

this basis is orthogonal with respect to the Lebesgue measure. 

Remark 1: One can easily see that the proof of Theorem 4.5 works as well for the 
- -  O O  system (q~,,),,=0. Using this observation one can easily construct a basis in the 

space C(T) of continuous functions on the unit circle such that a subsequence of 

this basis is a basis for the disc algebra. The periodic Franklin system also has 

this property (see [Bo~31). 



Vol. 75, 1991 ORTHONORMAL POLYNOMIAL BASES 179 

Remark 2: Let us explain in some detail the relation between our constructions 

of Sections 3 and 4 and the work of J. Bourgain [Bou]. In [Bou] (among other 
o~ ~/~i~txs.2' is constructed. The first half of the things) a basis in the space ~vo,.t~ Jk=l 

x"3"2q-t ake ikt and next he constructs basis consists of functions of the form z-,k=2,-~ 

functions whose non-zero Fourier coefficients are contained in two intervals, in 

each step shorter and closer to numbers 0 and 3 • 2 q. In our construction we 

start from the "middle" and next expand the size of the support of the Fourier 

transform to get it further away from the number 0. This is the basic change 

made in Section 3 while in Section 4 further modifications are made to get 

orthogonality. It is possible to carry on a "shrinking" version of the construction 

of Section 4 to get an orthogonal basis with uniformly bounded basis constant 

in spaces span{eikt}~=l for N = 3.2 q. Without any restriction on N such bases 

were constructed by S. V. Bo~kariov in [Bo~2]. His construction uses a discrete 

version of the Franklin system and is difficult to visualise in terms of Fourier 

coefficients. 

Remark 3: The paper of J. Bourgain [Bou] has its fundamental motivation in 

the so-called finite dimensional 7rx-problem. This problem asks the following: 

does there exist a function f(),) such that d (Z ,e~  rex) < f(X) for every finite 

dimensional subspace X C C(T) such that there exists a projection P from 

C(T) onto X with ][P]] _< A. The symbol d(., .) denotes the classical Banach- 
Mazur distance [Wo2, II.E.6]. Using Lemma 4.1 from [Bou] we can show that 

span{c~j}  j= N C spaces M C(T) (where @j's are as in Theorem 4.5) axe uniformly 

isomorphic to t~")-spaces. This isomorphism, however, is not constructive. It 

would be interesting to exhibit explicitly in those spaces a basis equivalent to 

the unit vector basis in t ~  "). In some cases this is done in the forthcoming 

paper of the second named author. A related problem is to establish if the basis 

we obtained in Theorem 4.5 is equivalent to some classical basis like a Haar or 
Trar~klin basis. 

5. Unconditionality 

Our aim in this section is to show that the orthogonal system constructed in 

Section 4 is an unconditional basis in Lp(T) for 1 < p < oo. Our approach will 

be via the space BMO, so let us recall appropriate definitions. We say that a 

function on T belongs to the space BMO if and only if for every interval I C T 

there exists a constant cz such that 

(5.1) IcTSUpl/]f-cl l2<°° 'M, 
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It is easy and well known that (5.1) is equivalent to the condition 

(5.2) ZCT]~sup l f[ if I' y <oo. 

It is also well known that the space BMO (after obvious identification of func- 
tions equM almost everywhere) is a Banach space when equipped with the norm 

We will also need the space ReH1. This is the space of all functions f E LI(T) 
such that its trigonometric conjugate )~ also belongs to LI(T). Recall that the 

well known Fefferman duality theorem asserts that (ReH1)* = B M O  with the 

natural duality. This and much more about B M O  and H1 can be found in almost 

any modem text on harmonic analysis. As an example we point out [Tor]. 

In this section it will be convenient to change the notation in order to introduce 

a more geometric picture. Let f~ = I[P:I[21P: where polynomials P :  were 

defined in (4.4). This is a complete orthonormai system. For f~ we will use the 

notation fv where 

[(2_j-- 1)1r (2j -I- 1)~r 1 
(5.4) v---- [ 3 -2  k-1 ' 3 - ~ - - ]  J" 

We treat v as a subinterval of T using the obvious covering map from real 
numbers onto T. The set of all intervals as in (5.4) for k -- 0 ,1 ,2 , . . .  and 

j = 0 ,1 , . . . ,  3.2 k-1 - 1 will be denoted by ft. Observe that for a fixed k all such 

intervals form an almost disjoint covering of T. Also two intervals from ff  are 

either disjoint or one is contained in the other. 

Convention: In this section symbols v, w (with subscripts as needed) will always 

denote intervals from ft. An arbitrary subinterval of T will be denoted by I (with 

subscripts when needed). 

Now we can formulate the main result of this section. 

THEOREM 5.1: A tinct/on f E LI(T) beAongs to BMO if and only if 

(5.5) sup 1 f l y  < co. 
wE.7 

Before we proceed with the proof let us note some corollaries of this result. 
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COROLLARY 5.2: The orthogonal system (#.).°°= 0 considered in Theorem 4.5 

is an unconditional basis ha Lv(T ) for 1 < p < oo. 

Proof: Clearly the difference between the system (~.).°°__ o and the system (fv)vey 

is only in the normalisation. Prom (5.5) we see that the system (fv)vey is un- 

conditional in B M O  and being orthonormal it is unconditional in L2(T). Since 

Lp(T) for 2 < p < ~ are interpolation spaces between B M O  and L2(T) (see 

[C-W]) we get that (/,,)vEY is unconditional in L, (T)  for 2 <_ p < oo. Since it is 

linearly dense (see Theorem 4.5) it is an unconditional basis. The case 1 < p < 2 

follows by duality. 

COROLLARY 5.3: The system (fv)vey is an unconditional basis in the space 

ReH1. 

Proof." This follows immediately from the well known Fefferman duality theorem 

that (ReH1)* = BMO.  

Remarks: The formula (5.5) gives a characterisation of B M O  functions. It is 

the same characterisation as the one given in [Wol] using the Franklin system. 

As a consequence we see that the system (fv)ve./ is equivalent in B M O  with 

the Franklin system. In Lp(T) for 1 < p < co it is equivalent to both the Haar 

and Franklin system. 

Now we return to the proof of Theorem 5.1. We start with the following 

preliminary Lemma. 

Lemma 5.4: For each function f :  = fv we have 

(5.6) 
{ Clvl-'/2 for t e v, 

If~(t)l = If.,(t)l < Clvl It - ~ [ - s / 2  for t ~t v .  

Note that Ivl = -1 .  We will denote this quantity by L(k). 

Proof." From the construction we see that it is enough to consider 

1 b-t ~k 

V~ 

Like in the beginning of the proof of Lemma 4.2 we observe that Pok(t) = 

E_°°oog(n2'+l)e ~"' where g is given by (4.12) and (4.13). Prom this and the 
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standard transference or the Poisson's summation formula (see [S-W]) we infer 

that 

(5.7) 
o o  

P t ( t )  ~" 2k+l E g(2k4"lt "~21r2'+'s)" 

This formula together with (4.12), (4.13) and Lemma 4.3 immediately yields 

(5.6). 

Remark: The formula (5.7) can be easily checked directly. We have to compute 

Fourier coefficients of both sides and check that they are the same. 

The proof of Theorem 5.1 is contained in the two following Propositions. 

PROPOSITION 5.5: /_fa sequence of complex numbers (a(v)) , ,es for some con- 

stant C satisfies 

(5.8) ~ la(v)p < Clwl for an w • S 
vCw 

then 

(5.9) f = E a(v)fv • B M O  
vEff 

and Ilfllauo < C'. 

PROPOSITION 5.6: There exists a constant C such that for every function f • 

B M O  with llflleMo -< 1 and f = E v ~ J  a(v)fv we have 

(5.10) E la(v)l ~ -< ClwI f o ,  ~u w • s. 
vCw 

Proof of Proposition 5.5: From (5.8) we see that f • L2(T). Let us take an 
2n arbitrary interval I C T. Without loss of generality we can assume that [I[ < ~-. 

Let us fix two adjacent intervals vl and v2 from 3" such that 

(5.11) Iv, I = I,,21 < 61/I 

and such that 

(5.12) vl U v2 D 31 
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where 31 denotes the interval with the same center as I but  three times longer. 

The interval v] U v2 will be denoted by w. Let us write 

(5.13) f = E  + Z + Z a(v) fv=E,+E2+Ea.  
vc,,, ,,:,,n,.,=m, I,,l<lXl v:M>lXl 

From (5.8) we get 

(5.14) f~ IEll2 < f r  IE'I~ < 2C1',.'1 < ClXl. 

From (5.8) we i n f e r  in particular t h a t  la(v)l < Clvl ~/2 so  fo r  x • I we h a v e  

(5.15) 

IE~(~)l -< ~ I~(~)1 Ifv(,)l 
v:vn,.,=O, I~l_<ltl 

<c E Z 
k: L(k)<l/I v:vn~=0, Ivl=L(k) 

IS,,(~)l. 

Using (5.12) and Lemma 5.4 we majorise the internal sum in (5.15) by 

(5.16) 

oo 1 oo ) - ~ / 2  
c~-~lvl( I11+(,-  )lvl )-~/~ < Ivllvl-~/~c~ (1II + 

- \ l v l  s=1 s = l  

< C l v l - a / 2  (lIl'~ -~/2 < ClIl-~/z. 
- \ lv l /  - 

From (5.15) and (5.16) we immediately get that for x • I 

(5.17) E,2(z) < ClX1-1/' ~ 9. k/~ = C. 
k:Z,(k)<lrl 

For arbitrary points x, x0 E I we have 

(5.18) IE~(~) - E~(~0)l _< ~ la(v)llf.(~) - fv(~0)l 
I>lII 

< c  ~ 2 -ki~ ~ I/,,(~,)-,f,,(~o)l 
k:L(k)>ltl v:lvl=L(k) 

f[° = C  ~ 2- ' / '  ~ If'(~)ld5 
tc:L(k)>ltl v:lvl=L(/0 

Since 

v:lvl=~ -s' v:Jvl=2-h 
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and since each fv is a trigonometric polynomial of degree at most C-  2 k, from 

Bernstein's inequality and Lemma 5.4 (or Lemma 2.1) we get 

(5.19) II ~ If'(~')llloo -< c.2'11 
v:M=L(k) 

From (5.19) and (5.18) we get 

E, ( , ) -  E,(,o)l_( o 
(5.20) 

Ifvlll= -< c .  2 ~/=. 
v:lvl=L(t) 

2 - k / 2 .  J= - =o1" 2 3k/2 
I,:n(t)>lXl 

<_ ClXl. ~ 2 t <_ C. 
k:L(t)>l/I 

From (5.14), (5.17) and (5.20) we get l~ f l  I / -  ~--~(=o)1 = < c so f c B M O .  

Proof of Proposition 5.6: Observe first that norms IIf,,ll, and II/,,llReH, are uni- 
formly equivalent for v E 3". This can be done exactly like in the proof of 

Theorem 4.6. This implies that 

(5.21) II.f,,IIReH, --< ~Ivl ~/2. 

For given w E 3" let us write 

f =  E o(~)s. = E + E + E o(-)~- 
vey vow v:l,,l<_lwl..~d vnw=O v:lv>lwl 

=E,+E~+E, 
Note that from (5.21) we get 

(5.22) I,,(',')1 = I(f , ,f , , ) l  -< IlfllaMo" IIf,,llR.--, ----- clvl '/=. 

We wiU show that 

(5.23) I j( Z , I  -< cIwl, 

(5.24) 

(5.25) IEa(Xo) - E a ( x ) l  < C for x, xo E w, 
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(5.26) ( /T \w  1~'~112)1/'~ _< C]w] 1/2. 

Using (5.22) and Lemma 5.4 we get 

k.'L(k)_<lwl ,,¢w : I,,l=L(k) 

k. L(k)_<lwl _ I"I 

< C ~ 2 -3./2 ~(4vl)  -~n 
k: L(k)_<l,,,I o=~ 

_<c 2: 
~: L(k)_<l--I \ Ivl/ 

= C l , , , I  ' / ~  ~ 2 -k/~ < Cl,vl. 
k. #(k)<l,,,,I 

Thus (5.23) holds. We also have 

(/.,z.,t'" 
(5.27) 

t~: L(k)_<lwl v : vnw=m, Ivl=L(k) 

--< ~ 2 -k/2 ( ~ If,'l) ~ 
k." L(k)_<lwl v. vnw----O, Ivl=L(k) 

Elementary computations using Lemma 5.4. show that for x E w we have 

(5.28) 

If,,(~)l 
v : -..n,.,=m. I,,l=L(k) 

_< C max (min(2 k/2, (z - a)-'/2), min(2 k/2, (b - z)-'/2)) 
a~b 
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where a and b denote endpoints of the interval w, i.e. w = [a, b]. From (5.27) 
and (5.28) we get 

( / w  ]E212) I/2-~ ~ E 2--k/2 (ln(1 Ji- 2kiwi)) 1,2 <~ CIW[ 1/2 
k: L(~)_<IwI 

so (5.24) holds. 
The  proof of (5.25) is exactly the same as the proof of (5.20). 

Using Lemma 5.4. we get 

-< (iT "4  ''' vCw \w 

k: n(k)_<lwl ,,Cw: l',l=n(k) 

l l~ oo 1/2 

k: L (k )< lw l  = .2-k 

_< c ~ 2-"~(,.2-b-' 

< c ~ 2-J'/=in(1 + < Clwl '/=. 
k :  L(k)_<l,vl Iv l  ' - 

(/.,w .,v,') ''' 

This shows that  (5.26) holds. Now we are ready to show (5.10). From (5.23), 
(5.24) and (5.25) we get IE3(=0) - ~ L II < c so from the de~it ion of the 
BMO norm we get 

(5.29) - < C .  

From (5.24), (5.25) and (5.29) we s ~  that 

(5.30) /w [E l  [2 ~ Clwl. 

Since )-~w¢,, [a(v)[ z = fT [~'~1[ 2 (5.10) follows immediately from (5.30) and 
(5.26). 



Vol. 75, 1991 O R T H O N O R M A L  P O L Y N O M I A L  B A S E S  187 

Remark: We will show (see Corollary 6.3) that  in spaces A, H1, C and L1 

we must have a linear growth of v,, with the slope bigger than the smallest 

algebraically possible. So our constructions for those spaces are close to optimal. 

It seems to be an open problem what is the situation for unconditional bases 

in Le(T) for 1 < p < co, p # 2. To be more precise let us ask the following 

questions: 

Let ( k)k=0 be an unconditional polynomial basis in Lp(T) ,  1 < p < eo, p # 2. 

(1) Can we have " v. 1 h m .  n ---- ~ " 

(2) Can we have v2,+1 = rt for infinitely many n's ? 

It is well known that  {eikt}~°=_~ is an unconditional basis in Lp(T) only if 

p = 2 [Wo2, Proposition II.D.9]. On the other hand it is a classical result of 

Marcinkiewicz (see e.g. [Wo2, Theorem II.E.9]) that  span{eikt}lkl<, in Lp(T), 
p 2 n + l  1 < p < co is uniformly isomorphic to ~r , so it has an unconditional basis. 

The problem is to glue those bases together. We suspect that  the answer to our 

second question above is positive. It is impossible, however, to have v2,,+1 = n 

for all n's. This was observed by A. Pelczyfiski. The proof is based on the 

following fact (Corollary 9 from [K-P]): 

FACT A: / f  (z,)~°=0 is a normalised, unconditional basis in Le, 2 < p < eo, 

then l iminf  11 .112 = 0. 

Now suppose that  ($-),~--0 is a normalised, unconditional basis in Lp(T) for 
some p, 1 < p < co, p # 2 such that  2N " span(~b,),= 0 --'-- span(e'kt)lkl_< N for all 

bj e . The biorthogonal functionals (~,,),=0 form N's. Thus ~,, = ~'~AjI<a_~ " i j t  . 

a normalised unconditional basis in L f ( T )  and d* = ~"~fl~l>~ _,,_ijt ,¢~ . Thus we 
h a v e  

(5.31) 1 ---- q~:(~n) = ~ a;b;. 
, ,<  ; < n_zk~ 

If 1 < p < 2 we majorise (5.31) by II .llp. ll * ll2 so we infer from Fact A that  

(~*)~=0 is not an unconditional basis, so (~-)~=0 also is not an unconditional 

basis. If 2 < p < co we majorise (5.31) by II~-II~" II~ll , ,  and  once again Fact A 
gives that  (~,,),,°"__ 0 is not an unconditional basis. 

6. Es t imates  from Below for v .  

The main result of this section is Theorem 6.1, which is an extension of a result 

of [Pri]. It gives immediately that  if (~k)k°°__0 is any basis in C(T)  or LI (T)  
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consisting of trigonometric polynomials, then v,(@k) > (1 + e)n/2  and for poly- 

nomial bases in A(T) and Hi(T)  we have vn _> (1 +e)n.  Our argument is a small 

modification and simplification of arguments in [Pri] and is given here mostly to 

make the paper self-contained. 

THEOREM 6.1: Let W. = span {eikt}~ffio and let X be a subspace of Wn of 

codlmension rn. Assume that P is an operator from A(T) (resp. from Hi(T) )  

into Wn such that PI X = id. Then [[P[[ >_ cln ~ for some absolute constant c. 

Proof: We will present the proof simultaneously for both spaces A(T) and Hi(T) ,  

so the symbol II.ll win denote one of the norms (fixed for the whole proof). In the 

proof we will be dealing with polynomials in two variables t and v, so when we 

want to stress the variable with respect to which the norm is computed we will use 

the symbol [[.[[(t) or ][.n(r). It suffices to consider integers m such that m < 16-sn 

and ~ = k 3 for some integer k. From known properties of the Dirichlet kernel 

E,=o P(~) e''t s~ch (see [Kor]) we infer that there exists a polynomial F(t )  = 2k 

that 

(6.1) IIFII : 1 and P(k)  = 0, 
k - 1  

(6.2) II -> clnk. 

k - 1  2 k  n _ We will write F~ = E . - -o  F(~)~° '  and F~ = E°--~+~ F(~)  e~°'- For M = k 
3m = k2rn - 3m we put 

(6.3) f ( t )  = F ( M t ) ,  f l ( t )  ---- FI(Mt ) ,  i f ( t )  = F~(Mt) .  

Clearly []f][ = [[El[ , [if1][ = ][FII[ and I[f21] = I[F21[. Let us fix functionals 
, ~r8 71~ 

(x/)i= 1 such that X -- Ni=I kerx~ N W.. Let us consider the following system 

of linear equations: 

2mk 

(6.4) x ; (  eiMqt " E a i e i U ) = 0  
I = 0  

for j = 1, 2 , . . . ,  m and q = 0, 1 , . . . ,  k - 1, k + 1 , . . . ,  2k with 2ink + 1 unknown 

at. Since it is a system of 2ink equations there exists a non-zero solution which 

x'2mk aze iu with [[QH-- 1. we identify with a polynomial Q(t) = z.,l=o 

We will use the standard notation: for a function g on T we denote by gr the 

function gr(t) -- g(t + r). Let us consider the function 

(6.5) [ P ( h "  Q)]-~ = [P(f~" Q)]-~ + [P(f~" Q)]- , .  
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Note that  f r  1 • Q is for every ~" E T a polynomial in t of degree at most 2ink  + 

M ( k  - 1) < 2ink  + n - 3ink = n - m k  < n. Thus we infer from (6.4) that  for 

each r E T the function ]~ • Q E X,  so 

(6.6) P(f~ . Q) =/~, .  Q. 

Let us consider [P( f~  • Q)]_,  as a function of r (for a fixed t E T).  One 

checks that  it is a polynomial and the lowest non-zero coeflleient has number 

> (k + 1)M - n. From our restrictions on m we see that  (k + 1)M - n > 4ink.  

Since [f~ • Q]_ ,  = f l .  Q _ ,  we see that  ( for every t E T)  it is a polynomial in 
1- of degree at most 2ink.  Using (6.5) and properties of the de la ValiSe Poussin 

kernel in the variable r we get 

IIIllP(S,. Q)]-~llc,)ll~) = IIII[P(S~- Q)]-~l l , ) l l~0  

= lilly x. O - ,  + t P ( g .  Q)]-,II(,)II(,) 

(6.7) --- cllllf ~ • Q- , l l ( , ) l l (0  = cllf~ll • IIQII >_ c lnk.  

On the other hand 

IIIl[PCf,. Q)]-,II(,)II(~) = IIIl[P(f," Q)]ll(011(,) 

< IIPIIilllf, "Oil(011(,) = ttPII 

so comparing with (6.7) we get IIPII > c h k  > c h  

COROLLARY 6.2: Suppose  that  P is an operator f rom the  space C ( T )  or from 

the  space LI (T)  into span{eikt}lkl<, ,. A s s u m e  that  PIX = id for some X C 

span {eikt}lkl<n_ and codim X = m.  Then  IIPII >_ eln z,+~.,~ 

Proof." Since the multiplication by e int is an isometry of C(T)  and L I (T)  we see 
i k t  2n that  we can assume as well that X C span{e }~=0" From Theorem 6.1 we see 

that  IIPIA(T)II or IIPIH~ (T)II satisfies the desired estimate. This clearly implies 
the estimate for IIPII. 

COROLLARY 6.3: 

(1) Let (~k)~°=0 be a polynomial  basis in the space C(T)  or LI(T) .  Then  there 

ezists an e > 0 such that vn > (½ + ~)n. 

(2) Let (~t)t~=o be a polynomial  basis in the space A(T) or H , ( T ) .  Then  there 

ezists an e > 0 such that vn > (1 + e)n. 

Proof." We will prove only the ease (1). The proof of (2) is the same with Theorem 

6.1 replacing Corollary 6.2. To prove (1) we apply Corollary 6.2 with X being 
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span{qk}~=0 C span{eikt}lkl<~ . and P being the natural partial sum projection 

with respect to the basis (qk).  We get be(~k)  > Ilell > - ' -  2 ~ . + ,  - -  __ t. xxt 2vn+l--n SO "On ~--- 
C 2(c---c~)n -- 1 for some C > 1. 
Let us point out that results of Privalov [Pri] and also our Theorem 6.1 gen- 

eralise the main results of [Shl] and [Sh2] and solve problems posed in those 

papers. We have 

COROLLARY 6.4: Let X be either the space C ( T )  or the space L , ( T )  and 

assume that T : X ~ span (elkt)lkl<n C X is such an operator that T* IY  = 

idv for some subspace Y C X*.  Then 

2 n +  I 
IITII _> eln 2n + 2 - dimY" 

Proof." Clearly we have dimY _< 2n + I. The assumption means that 1 is an 

eigenvalue of T* with the multiplicity at most dimY. But elementary spectral 
theory, or linear algebra, shows that I is an eigenwlue of T** with multiplicity at 
least dimY. Since T**(X**) C span(eikt)Ikl<, and T**]X = T we see that there 

exists a subspace ]I, C span(e/kt)ikl_<, such that dimY, = dimY and T[Y,  = idyo. 

Thus Theorem 6.1 gives the claim. Theorem 2 of [Shl] is Corollary 6.4 for X = 
C(T)  and Y = span(vj)~n=l where vj's are measures with disjoint supports. The 

main result of [Sh2] is Corollary 6.4 for X = LI (T)  and Y = span(f j )  where f j ' s  

are disjointly supported functions in L ~ ( T ) .  The problems asked in those papers 

deal with removing the assumption of disjointness of support. Our Corollary 6.4 
clearly shows that the only assumption needed is linear independence. 

An analog of Corollary 6.4 for spaces HI and A clearly also holds with the 

same proof. 
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